第2回 全統模試記述(8月) 3年生 2020年

图 纷纷

Oを実数の定数として、X>Oで定義された2つの関数。

$$f(x) = \chi \log \chi$$

 $g(x) = \frac{1}{2} \chi^2 / \log \chi - \frac{1}{4} \chi^2 - \alpha \chi$

を考える、

(1) f(x)の増減を言るが、y=f(x)のグラフの概形を そかけ、ただし以際ならば

lin X.10g X = 0 2 \$3 >2 E \$11.7 \$11.

〈解きオ〉

$$f(x) = X \cdot \log X$$

$$f(x) = 1 \cdot \log X + X \cdot \frac{1}{x}$$

$$= \log x + 1$$

七質減衰を考しう

Y=00270 X=? & toos @

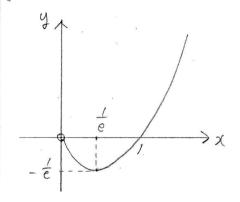
 $f''(x) = \frac{1}{x}$

\$ 12 X>024

f"(x)>0

$$\chi = \frac{1}{e}$$

7	0	111	le		00	
f(x)		-	0	+		
f(14)	(0)	A	- é	7	(0)	
		. 0			1	340



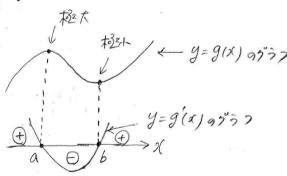
y=00ときの人の分直を記してき

(2) タはかが起大殖を持つとする。

(i) Qの5直の範囲をがみよ

く解せる〉

9(のが砂値を持っためには…



g(x)が要はる2つの解を持っていまい

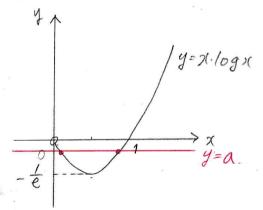
	V 2	00 2	,	/		-9'(x)=0
X	111	a	111	6	",	となる解
9(x)	D	0	0	OK	(+)	1=0, x=1
9 (x)	7	超大	>	超小	7	をもでない。

大つまり、こうないはよい、

二山が要なる2つの解を持さればよい、

と2つの関数に分け、これらか2つの解きますつようにのの範囲を試みる。

1) 0527 (2 (1) 2 Tid TE



この2つのグラクが異なる2つの解を持ったのの

$$-\frac{1}{e} < \alpha < 0$$

(ii) Qが(i)の範囲を動くときを考える。g(x)が、 木型大となる人の値をPとして、2点(0.0),(P.9(P)) を適る直線のなのきの最大値を求めよ。

く解き方と

超大値を取るときの父の値がり、

2点(0.0)(p.g(p))を適る直線の1項きをん(p)

②を①にかけれずいば のを消までする!

この最大値を求めたいが、その前12Pの範囲を求め よう

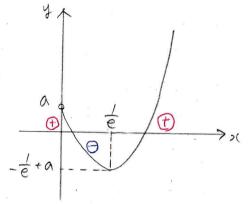
"P"とは、 g(x)のグラフがおと大ろ直をもつときの

久の方直である、つまり…/ ココロいる!

(1				
9(***	P	(' '		
19'(x)	+	0			
9 (x)	1	9(p)	7		

したがって、なるなとなるのも直の範囲を考えいは、 Pの範囲がわかりまうである。

超大方面は g'(x)のグラフが 田→〇に安める たたである。 そこで g'(x)のグラフを養いてみよう g(x)= x/ogx-a。(- e < a<0)
) #4. f(x)= x/ogx のグラフミ 4軸方向に
の平行移動したもの。



€ 20 +3 (= 53. Ltab", 7. P12...

:, OSPS = 1= 2173.

まみよう.

$$h'(p) = -\frac{1}{2} (\log p + p \cdot \frac{1}{p}) - \frac{1}{4}$$

$$= -\frac{1}{2} (\log p - \frac{1}{2} - \frac{1}{4})$$

$$= -\frac{1}{2} (\log p - \frac{3}{4})$$

符等安外色调彩在的

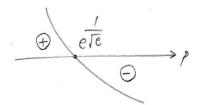
$$-\frac{1}{2}logp - \frac{3}{4} > 0 + 5' < \frac{1}{2}logp > \frac{3}{4}$$

$$logp < -\frac{3}{2}$$

$$logp < loge^{-\frac{3}{2}}$$

$$p < \frac{1}{e\sqrt{e}}$$

(tob) 7. h (p) 050712.



となるとがかかる。

t智诚意至为声音を.

. 1		1		. /
0	***	ere		e
	+	0	agest and a second	7
	7	最大.	7	
	0	0	0 ···· erc + 0 是大.	0 ···· ere ···· + 0 - / 是大 ···

したがって、 P= 1/e/e で最大値となることが

$$(e\sqrt{e}) = -\frac{1}{2} \cdot \frac{1}{e\sqrt{e}} \cdot \log e\sqrt{e} - \frac{1}{4} \cdot e\sqrt{e}$$

$$\log e\sqrt{e} = \log e^{-\frac{3}{2}} - \frac{3}{2}$$

$$h(e\overline{le}) = \frac{3}{4} \frac{1}{e\overline{le}} - \frac{1}{4e\overline{le}}$$

$$= \frac{1}{2e\overline{le}} \left(= \frac{1}{2}e^{-\frac{3}{2}} \right)$$